

AGORA É COM VOCÊ...

Resolva a equação do 2º grau

$$t^{2}-2t+1=0 a=1 b=-2 c=1$$

$$\Delta = b^{2}-4ac$$

$$\Delta = (-2)^{2}-4.1.1$$

$$\Delta = 4-4$$

$$\Delta = 0 t_{1} = t_{2} S = \{1\}$$

O discriminante da equação do 2º grau

Em uma equação do 2º grau, as raízes resultantes dependem do valor do DISCRIMINANTE, que é representado pelo símbolo Δ (DELTA).

$$\Delta = b^2 - 4ac$$

Se $\triangle > 0$, POSITIVO, a equação possui duas raízes reais e diferentes. $x_1 \neq x_2$

Se $\Delta = 0$, a equação possui duas raízes reais e iguais. $x_1 = x_2$

Se $\triangle < 0$, NEGATIVO, a equação não possui raízes reais. x_1 e x_2 não são reais.

Para que valores de k a equação $x^2 - 2x + k - 2 = 0$ admite raízes reais e iguais?

$$\Delta = 0
a = 1
b = -2
c = (k-2)$$

$$\begin{vmatrix}
b^2 - 4ac = 0 \\
(-2)^2 - 4.1.(k-2) = 0
\end{vmatrix}$$

$$4 - 4k + 8 = 0
-4k + 12 = 0$$

Para que valores de k a equação $2x^2 + 4x + 5k = 0$ admite raízes reais e diferentes?

$$b^{2} - 4ac > 0$$
 $a = 2$
 $b^{2} - 4ac > 0$
 $4^{2} - 4.2.5k > 0$
 $b = 4$
 $16 - 40k > 0$
 $c = 5k$
 $-40k > -16$

$$-40k > -16$$

$$40k < 16$$

$$\times -1$$

$$k < \frac{16^{:8}}{40:8} : k < \frac{2}{5}$$

Para que valores de m a equação $9x^2 + 12x + 2m = 0$ não admite raízes reais?

$$b^{2} - 4ac < 0$$
 $a = 9$
 $b = 12$
 $c = 2m$
 $b^{2} - 4ac < 0$
 $12^{2} - 4.9.2m < 0$
 $144 - 72m < 0$
 $-72m < -144$

$$-72m < -144$$
 $72m > 144$
 $m > \frac{144}{72}$
 $m > 2$

Para que valores de K a equação $x^2 - kx + 9 = 0$ admite raízes reais e iguais?